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In the present work the effect of spanwise oscillations on the most unstable Görtler
vortex is studied. The wavenumber of the most unstable disturbance is very large,
so that the parabolic character of the problem is eliminated. After the disturbances
are expanded in a Fourier series in time, the eigenvalue problem is solved for
various amplitudes and frequencies of the oscillation. Due to numerical difficulties the
treatment of very high amplitudes and/or very low frequencies becomes prohibitively
expensive. Therefore an approximate formulation was developed for high magnitudes
of the spanwise speed of the oscillation E. The results, which were obtained in all
cases, indicate that the disturbances move away from the wall in a logarithmic way,
reducing the effects of the oscillation. Consequently, it is impossible to stabilize the
flow completely. However, it is shown that a large reduction of the growth rate can
be achieved even for moderate values of E.

1. Introduction
One route to transition, especially in aeronautical applications, is through the growth

of Görtler vortices in developing flows over concave surfaces. The problem has many
characteristics in common with the centrifugally induced Taylor-vortex instability and
was studied theoretically by Görtler (1940). It was shown that although the centrifugal
force is stabilizing for two-dimensional disturbances, it can create three-dimensional
instability in the form of vortices that are parallel to the main stream. Experimental
confirmation followed in Gregory & Walker (1950) who used a ‘china-clay technique’
on the concave flap of a Griffith suction aerofoil. In the initial stages of the study
of this problem the parallel flow approximation was made. Hämmerlin (1955) solved
the resulting approximate equations in a rigorous way and was able to show that the
minimum critical Görtler number occurs at zero wavenumber, which corresponds to
an infinite wavelength and which of course was in contrast to experimental results.
This discrepancy was attributed to the approximations made in deriving the governing
system of equations. Later Hämmerlin (1956) and Smith (1955) included some more
terms in the expansions related to the curvature and, in the case of Smith, to the
boundary layer growth, and were able to show that the minimum critical Görtler
number occurs at non-zero values of the wavenumber.

However Hall (1982, 1983) showed in a mathematically justifiable way that for
vortices with wavelength of the same or larger order of magnitude than the boundary
layer thickness the parallel-flow approximation is wrong, and that in this case the
non-parallel effects associated with boundary growth must be retained in the analysis.
This results in a system of PDEs, instead of the ODEs of the previous studies. The
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system is parabolic in the streamwise direction and therefore its solution depends
on both the initial disturbance and where this is introduced into the flow field. A
consequence of this is the absence of a unique stability curve or a unique growth rate.
However it can be shown that at high Görtler numbers the local wavenumber ax and
the local Görtler number Gx are related by the following expressions:

Gx ∼ a−2
x , ax � 1 and Gx ∼ a4

x, ax � 1.

Note also that the modes found by Hall correspond to modes with wavenumber of
O(G1/4) at high Görtler numbers and they are localized in an asymptotically thin
layer in the interior of the flow.

Later on the study was extended to three-dimensional boundary layers of a general
form (Hall 1985). It was found that at λ∼ O(Re−1/2), where λ is a crossflow parameter
indicating the ratio of the values of the crossflow to streamwise velocity components
and Re is the (large) Reynolds number, a significant change occurs in the structure
of the vortices. The vortices become time-dependent and they meander as they
develop in the chordwise direction. In addition the orientation of the most dangerous
vortex is determined by the vortex lines of the basic flow. In relation to that it
was shown that for neutral disturbances of small wavelength, the vortex boundaries
locally align themselves to be perpendicular to the vortex lines of the mean flow. At
larger values of λ the disturbances develop into centre modes of the Orr–Sommerfeld
equation which are rendered unstable by centrifugal effects. Most importantly the
results obtained indicated that with the existence of sufficiently strong crossflow, the
Görtler vortex instability becomes unimportant relative to Tollmien–Schlichting and
crossflow instabilities. Finally it was concluded that in the general case the above
problem could be solved in the region 0< λ<O(Re−1/8), but for the specific case
of zero pressure gradient the three-dimensional problem could be reduced to an
equivalent two-dimensional one, which lifts the latter constraint.

Further work (Denier, Hall & Seddongui 1991) focused on the receptivity of Görtler
vortices in the case of surface roughness. In the process of studying this problem it
was found that there is another significant wavenumber regime where the fastest
growing spatial Görtler vortices occur. In contrast to the modes found by Hall, these
are located in a thin layer next to the wall and their wavenumber scales as G1/5.
Letting G → ∞ the parallel flow approximation is valid and the system of governing
equations reduce to ODEs. As an extension of this work the effects of a three-
dimensional boundary layer were studied by introducing a spanwise flow in Bassom
& Hall (1991). A crossflow parameter (λ) was again introduced indicating the ratio of
the size of the crossflow and the streamwise flow. This parameter becomes important
for vortices with O(1) wavenumber in a G � 1 flow, when it attains an order of
magnitude of O(Re−1/2G1/2). As the crossflow and wavenumber increase, a mode can
be obtained whose structure is dominated by viscous effects. When this happens λ
becomes O(Re−1/2G3/5) and the large wavenumber is the one studied in the latter
work. The results of the linear theory that were obtained indicate that although in
the two-dimensional Görtler problem the stationary vortices are essentially unstable,
with the existence of sufficiently strong crossflow they can be stabilized.

In the present study we have treated the most unstable Görtler vortices in the case
of a concave wall that is oscillating in the spanwise direction. This has been extensively
suggested as a means of supressing turbulence (Kwing-So-Choi 2002; Kwing-So-Choi,
DeBisschop & Clayton 1998; Nikitin 2000; Quardio & Ricco 2003). The control of
turbulence by spanwise oscillations is achieved by the destruction or modification of
the streamwise vortex structures embedded in the turbulent flow. Here our concern is
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whether such a control mechanism can significantly modify the growth rates of the
most dangerous form of linear instability associated with streamwise vortices. Our
calculations focus on the initial stages of transition on a concave surface and suggest
that the introduction of this kind of three-dimensionality can significantly reduce the
growth rate of the unstable (in the two-dimensional case) Görtler vortices, but can
never stabilize them completely. This is due to the fact that, though the effects of
the oscillation become important as the amplitude of the speed of the oscillations is
increased, at the same time the disturbances move away from the wall, reducing the
influence of the oscillations. Specifically it is shown that for a range of wavenumbers
around the one corresponding to the most unstable mode the vortices remain unstable
even for large oscillation amplitudes.

The procedure adopted in the rest of this paper is as follows: In § 2 the mean
flow and the instability problems are formulated. In § 3 we explain the numerical
approach used to solve the disturbance problem and give some results. In § 4 we
give an asymptotic formulation for the case of large values of the magnitude of the
oscillations. Finally in § 5 we draw some conclusions.

2. Derivation of the equations
The flow under investigation is taken to be incompressible, and the kinematic

viscosity and the density are denoted by ν∗
∞ and ρ∗

∞ respectively. Furthermore there
are two ‘velocities’ in this problem: the velocity of the fluid at infinity U ∗

∞ which we
use as our velocity reference scale and the amplitude of the spanwise velocity of the
wall ε∗. The reference length can be defined arbitrarily, say L∗. The characteristic time
scale to be used is tref = L∗/U ∗

∞. Finally a combination of the reference density and
velocity can produce a reference pressure. Hence if quantities denoted by an asterisk
are dimensional, the non-dimensional stretched quantities are given as follows:

(u+, v+, w+) =
(
u∗, Re1/2v∗, Re1/2w∗)/U ∗

∞, ε = ε∗/U ∗
∞,

(x, y, z) =
(
x∗, Re1/2y∗, Re1/2z∗)/L∗,

t = t∗U ∗
∞/L∗, p+ =

p∗

ρ∗
∞U ∗2

∞
,

where

Re =
U ∗

∞L∗

ν∗
∞

.

The non-dimensional form of the Navier–Stokes equations is

u+
x + v+

y + w+
z =0,

u+
t + u+u+

x + v+u+
y + w+u+

z = −p+
x + Re−1u+

xx + u+
yy + u+

zz,

v+
t + u+v+

x + v+v+
y + w+v+

z = −Re p+
y + Re−1v+

xx + v+
yy + v+

zz,

w+
t + u+w+

x + v+w+
y + w+w+

z = −Re p+
z + Re−1w+

xx + w+
yy + w+

zz.




(1)

The spanwise velocity of the wall, whose shape is defined by y = g(x), now becomes
w+

wall = ε cos(ωt), ω being the non-dimensional angular frequency of the oscillation:
ω =ω∗L∗/U ∗

∞. We assume flow quantities can be written as a superposition of a mean
part corresponding to an undisturbed flow and a small fluctuating part that describes
the disturbances. We write

p+ = p̄(x) + ∆Re−1/2p̃(x, y, z) + O(∆2),

(u+, v+, w+) = (ū, v̄, w̄) + ∆(ũ, ṽ, w̃) + O(∆2),

}
(2)
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where ∆ is a small curvature parameter. Substituting these expansions into equations
(1), separating the terms that are coefficients of different powers of ∆, taking into
account that the undisturbed flow does not vary in z and making the Prandtl
transformation of dependent and independent variables:

y → y − g(x), v̄ → v̄ + g′ū, ṽ → ṽ + g′ũ,

equations (1) become:
continuity equation

ūx + v̄y = 0,

ũx + ṽy + w̃z = 0,

}
(3)

x-momentum equation

ūt + ūūx + v̄ūy = −p̄x + ūyy,

ũt + ūũx + ūxũ + v̄ũy + ūy ṽ + w̄ũz = �2ũ,

}
(4)

y-momentum equation

p̄y = 0,

ṽt + ūṽx + v̄x ũ + v̄ṽy + v̄y ṽ + w̄ṽz + Gχ(x)ūũ= −p̃y + �2ṽ,

}
(5)

z-momentum equation

w̄t + ūw̄x + v̄w̄y = w̄yy,

w̃t + ūw̃x + w̄xũ + v̄w̃y + w̄yṽ + w̄w̃z = −p̃z + �2w̃,

}
(6)

where �2 = ∂2/∂y2 + ∂2/∂z2 and Gχ(x) = 2d2g/dx2. Since the reference velocity is
U ∗

∞ = ū(y → ∞), the boundary conditions appropriate to these equations are the
following:

at y = 0: ū = v̄ = 0, w̄ = ε cos(ωt), ũ = ṽ = w̃ = 0,

as y → ∞: ū → 1, w̄ → 0, ũ, ṽ, w̃ → 0.

}
(7)

In the above, the disturbance equations can be Fourier transformed in z to give
continuity equation

ux + vy + ikw = 0, (8)

x-momentum equation

ut + ūux + ūxu + v̄uy + ūyv + ikw̄u = uyy − k2u, (9)

y-momentum equation

vt + ūvx + v̄xu + v̄vy + v̄yv + ikw̄v + Gχ(x)ūu = −py + vyy − k2v, (10)

z-momentum equation

wt + ūwx + w̄xu + v̄wy + w̄yv + ikw̄w = −ikp + wyy − k2w, (11)

with the following boundary conditions:

at y = 0 : u = v = w = 0, as y → ∞ : u, v, w → 0. (12)

It can be seen that the equations of the mean flow concerning the streamwise and
vertical components of the velocity do not contain any dependence on the spanwise
velocity component, the time derivatives can be dropped and consequently the basic
flow equations can be reduced to the Blasius boundary layer equations.
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In accordance with Denier et al. (1991, hereafter referred to as DHS), the most
amplified Görtler vortex lies in a region a distance k−1 ∝ G−1/5 from the wall. In this
region Ψ = ky is of O(1). Taking into account equation (6) and demanding the effects
of w̄ and the time changes remain in the equation, we are led to the substitution
τ̂ = G2/5t . Using the new y-coordinate and time we find

∂w̄

∂τ̂
+

ū

G2/5

∂w̄

∂x
+

kv̄

G2/5

∂w̄

∂Ψ
=

k2

G2/5

∂2w̄

∂Ψ 2
.

Taking the limit G1/5 = k/λ̄→ ∞, λ̄∼ O(1), the following equation is obtained, which
as can be seen, does not depend on the streamwise and vertical components of the
velocity:

∂w̄

∂τ̂
= λ̄2 ∂2w̄

∂Ψ 2
. (13)

The solution of this equation must remain bounded as Ψ → ∞ and must satisfy the
boundary condition related to the spanwise velocity component on the wall. Hence
we have

w̄(Ψ, τ̂ ) = εe−Φ cos(ω̂τ̂ − Φ),

with Φ =
√

1
2
ω̂Ψ/λ̄.

As far as the disturbance equations are concerned, we observe that the x-momentum
equation contains only terms related to u and v. Furthermore it is evident that p and
w disturbances appear in equations (8) and (11) on their own, and therefore they can
be easily expressed in terms of u and v only. The aim is to reduce equations (8), (10)
and (11) to one equation containing only u and v. The final result is the following:(

ūxyy + k2v̄y + k4 + ik3w̄ + ikw̄yy + k2 ∂

∂t

)
v + v̄xuyy

+ (ūxyy + k2v̄x + k2Gχ(x)ū + 2ikw̄xy)u +

(
ūyy + k2ū − ū

∂2

∂y2

)
vx

+ 2

(
ūxy + ūx

∂

∂y

)
ux + vyyyy − v̄vyyy −

(
v̄y + 2k2 +

∂

∂t
+ ikw̄

)
vyy

+ (ūxy + k2v̄)vy + 2ikw̄xuy = 0. (14)

Equations (9) and (14) are quite general, since no assumption was made regarding
the form of the mean flow. They can be manipulated even further by taking into
account the characteristics of the mean flow, which is the Blasius flow in this case.
Near the wall we have that ū= µ(x)y, where µ is the shear stress on the wall and is
known to have the form

µ(x) = 0.4696x−1/2/
√

2.

Hence in the disturbance equation we make the following substitutions:

ūx = −v̄y = µxy, ūy = µ, ūxy = µx, ūyy = 0, ūxxy = µxx, ūxyy = 0, (15)

where the second equality in the first relation can be deduced from the continuity
equation for the mean flow. Furthermore we observe that since w̄ is independent
of x then w̄x = w̄xy = 0. Finally in the region of interest it can be shown that the
appropriate expansions of the disturbance quantities based on a WKB approach are
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the following:

u(x, y, t) = exp

(
G3/5

∫
β(x) dx

)(
u0(y, t) + G−1/5u1(y, t) + · · ·

)
,

v(x, y, t) = G2/5 exp

(
G3/5

∫
β(x) dx

)(
v0(y, t) + G−1/5v1(y, t) + · · ·

)
.


 (16)

Substituting the above into the disturbance equations, considering only the first
terms of the expansions (16), setting y = Ψ/k, t = τ̂ /G2/5, with w̄ = G1/5ŵ with
ŵ = O(1) we obtain(

∂2

∂Ψ 2
− 1 − 1

λ̄2

∂

∂τ̂
− βG3/5µΨ

k3
− µΨ

k3

∂

∂x
− µxΨ

k3
− v̄

k

∂

∂Ψ
− iŵ

λ̄

)
u0 =

µG2/5

k2
v0 (17)

and[
k4G2/5

(
1 +

iŵ

λ̄
+

1

λ̄2

∂

∂τ̂
− µxΨ

k3
+

iŵΨ Ψ

λ̄

)
+

GµΨβ

k

(
k2 − k2 ∂2

∂Ψ 2

)]
v0

+ v̄xk
2u0Ψ Ψ + (µxx + k2v̄x + kGχµΨ )u0 + 2µxβG3/5

(
1 + Ψ

∂

∂Ψ

)
u0

+ G2/5

[
k4v0Ψ Ψ Ψ Ψ − v̄k3v0Ψ Ψ Ψ −

(
k2 1

λ̄2

∂

∂τ̂
+

ik2ŵ

λ̄
+ 2k2 − µxΨ

k

)
k2v0Ψ Ψ

+ (µx + k2v̄)kv0Ψ

]
= 0. (18)

Setting k = λ̄G1/5 and taking the limit G → ∞ gives(
∂2

∂Ψ 2
− 1 − 1

λ̄2

∂

∂τ̂
− βµΨ

λ̄3
− iŵ

λ̄

)
u0 =

µ

λ̄2
v0, (19)

and[(
∂2

∂Ψ 2
− 1 − 1

λ̄2

∂

∂τ̂
− βµΨ

λ̄3
− iŵ

λ̄

)(
∂2

∂Ψ 2
− 1

)
+

i

λ̄3

∂ŵ

∂τ̂

]
v0 = −χµΨ

λ̄3
u0, (20)

where we have replaced ŵΨ Ψ with ŵτ̂ /λ̄
2. Finally for computational purposes we

write λ̄= (χµ2)1/5λ̃, β = (χ3µ)1/5β̃ , ε̂ = εG−1/5 = (χµ2)1/5E, u0 = µU0, v0 = (χµ2)2/5V0,
ω̂ = (χµ2)2/5Ω and τ̂ = λ̄−2τ . The final eigenvalue problem to be solved is(

∂2

∂Ψ 2
− 1 − β̃

λ̃3
Ψ − ∂

∂τ
− iŵ

λ̃

)
U0 =

1

λ̃2
V0[(

∂2

∂Ψ 2
− 1 − β̃

λ̃3
Ψ − ∂

∂τ
− iŵ

λ̃

)(
∂2

∂Ψ 2
− 1

)
+

iŵτ

λ̃

]
V0 = −Ψ

λ̃3
U0 (21)

with the following boundary conditions:

at y = 0: U0 = V0 = V0Ψ = 0, as y → ∞: U0, V0, V0Ψ → 0, (22)

where now: ŵ(Ψ, τ ) = E exp(−
√

1
2
ΩΨ/λ̃) cos((Ω/λ̃2)τ −

√
1
2
ΩΨ/λ̃).
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3. Numerical solution of the eigenvalue problem
3.1. Formulation

Since the basic flow is periodic with respect to Ωτ/λ̃2 we write

U0(Ψ, τ ) =

+∞∑
m=−∞

Ũ0m(Ψ )eimΩτ/λ̃2

, (23)

together with a similar expression for V0. ŵ can be expressed as

ŵ(Ψ, τ ) =

1∑
n=−1

An(Ψ )einΩτ/λ̃2

, (24)

where A±1(Ψ ) = 1
2
E exp[−(1 ± i)

√
1
2
ΩΨ/λ̃] and A0 ≡ 0. Equations (21) become

∑
m

(
d2Ũ0m

dΨ 2
eimΩτ/λ̃2

)
−

∑
m

[(
β̃Ψ

λ̃3
+ 1

)
Ũ0meimΩτ/λ̃2

]

− i

λ̃

∑
n

Ane
inΩτ/λ̃2

∑
m

Ũ0meimΩτ/λ̃2 − 1

λ̃2

∑
m

imΩŨ0meimΩτ/λ̃2

=
1

λ̃2

∑
m

Ṽ0meimΩτ/λ̃2

,

where for brevity the range of the indices has been omitted. Note also that more
detail of the analysis given in this section can be found in the thesis of Gallionis
(2003). We can deduce from above that

− i

λ̃
A1Ũ0(m−1) + DŨ0m − i

λ̃
A−1Ũ0(m+1) =

1

λ̃2
Ṽ0m, (25)

where

D =
d2

dΨ 2
−

(
β̃Ψ

λ̃3
+ 1 +

imΩ

λ̃2

)
.

This equation is valid for all values of m ∈ (−∞, +∞). However numerically, one
has to truncate this series to a finite range, say [−M, M].

As far as the second disturbance equation is concerned, it can be seen that the
operator between the first brackets on the left-hand side of is the same as the
operator of the first disturbance equation, and therefore it leads to similar terms,
when it operates on the term (d2V0/dΨ 2 − V0). We also find that

ŵτV0 = −
∑

m

iΩ

λ̃2
A−1Ṽ0(m+1)e

imΩτ/λ̃2

+
∑

m

iΩ

λ̃2
A1Ṽ0(m−1)e

imΩτ/λ̃2

.

Therefore

− i

λ̃
A1

(
d2

dΨ 2
− 1 − iΩ

λ̃2

)
Ṽ0(m−1) + D

(
d2

dΨ 2
− 1

)
Ṽ0m

− i

λ̃
A−1

(
d2

dΨ 2
− 1 +

iΩ

λ̃2

)
Ṽ0(m+1) = −Ψ

λ̃3
Ũ0m. (26)

Equations (25) and (26) together with appropriate boundary conditions specify an
eigenvalue problem for the spatial growth rate. The equations can be put into the
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simpler form

− i

λ̃
A1Ũ0(m−1) + DmŨ0m − i

λ̃
A−1Ũ0(m+1) − 1

λ̃2
Ṽ0m = β̃

Ψ

λ̃3
Ũ0m,

Ψ

λ̃3
Ũ0m − i

λ̃
A1D1Ṽ0(m−1) + DmD0Ṽ0m − i

λ̃
A−1D−1Ṽ0(m+1) = β̃

Ψ

λ̃3
D0Ṽ0m,


 (27)

where

Dm =
d2

dΨ 2
− 1 − imΩ

λ̃2
.

It can be seen from equations (22) that the boundary conditions appropriate to
Ũ0m and Ṽ0m are the following:

at y = 0, m ∈ [−M, M]: Ũ0m = Ṽ0m = Ṽ0mΨ = 0;

as y → ∞, m ∈ [−M, M]: Ũ0m, Ṽ0m, Ṽ0mΨ → 0.

}
(28)

The above equations have been discretized using a spectral collocation scheme
along the normal direction. The resulting linear eigenvalue problem has been solved
using the Implicitly Restarted Arnoldi Method. (See Lehoucq, Sorensen & Yang
(1998) for a discussion of the method.) The eigenvalue with the largest real part
corresponds to the most unstable Görtler vortex.

3.2. Results

A series of tests was performed for various values of the frequency of the oscillations
Ω (ranging from 0.1 to 5) and the amplitude of the oscillations E (ranging from
0.5 to 5000). It was observed during these runs that the required number of modes
increases with increasing E and with decreasing Ω . For instance converged results
could be achieved with only 5 modes (M = 2) for the case Ω = 0.5, E = 3, but at least
41 modes (M = 20) were required for the case Ω = 0.1, E =10, or Ω =2.5, E = 1000,
since the modes around the ‘steady’ mode m =0 are still important, as figure 1 reveals
for the case Ω = 3.25 and E = 2000. This introduced a practical difficulty and no
results were obtained using equations (27) for a small Ω and/or large E.

Figure 2 shows the dependence of the most unstable eigenvalue β̃ on various
combinations of Ω and E. It can be seen that β̃ is a monotonically decreasing
function of E, that is the vortices become less unstable with increasing maximum
speed of the oscillation. However no negative value of β̃ could be achieved for the
cases that were studied.

Figure 3 is a slice of the previous figure along the dashed line corresponding to
Ω = 3.25. It can be seen that at frequencies of this order of magnitude the growth rate
decreases rapidly with E till about E ∼ 100 and then starts levelling off. In particular
for the same decrease of β̃ achieved between E = 0 and E = 100, we have to increase
increase the amplitude to E = 1000.

Furthermore figures 4–6 illustrate the real and the imaginary part of the eigenvectors
for the cases E = 160, 200 and 1000 respectively, when Ω = 3.25 and at time τ =0.
All the eigenvectors were normalized so that the largest value of the imaginary part
of U0 is unity. These plots show that with the increase of E the disturbances move
progressively away from the wall and therefore their characteristics become less and
less dependent on the value of E. This is in agreement with the trend of β̃ . This
observation was used in order to make the study of the problem for values of E >∼ 2500
practical. The boundary conditions for Ψ =0 were imposed at Ψ =

√
2/Ω log(E/2500)

which is the value of Ψ at which the amplitude of the oscillation becomes O(10−3).
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Figure 1. The real part of Ũ0m for −2 � m � 2 for the Ω = 3.25 and E = 2000 case. It can be
seen that these modes are still important and accurate solution can be obtained with a much
higher number of modes.
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Figure 2. The dependence of the growth rate of the most amplified Görtler vortex on the
(velocity) amplitude E and frequency Ω of the oscillation of the wall.

Since the magnitude of the disturbances would anyway be very small closer to the
wall, this should not produce much error in the solution.

Results were obtained for the case of E =5000, Ω = 3.25 for both the complete
domain and the reduced domain. In both cases the wavenumber of the most unstable
vortex was 0.49 and its growth rate was 0.246. Because of numerical difficulties the
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Figure 3. The dependence of the growth rate of the most amplified Görtler vortex on the
(velocity) amplitude E for Ω = 3.25. This figure is a slice of figure 2 along the Ω =3.25 line.
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Figure 4. The real and imaginary parts of the Ũ0 and Ṽ0 disturbances of the most amplified
Görtler vortex for the case E = 160, Ω = 3.25.

values of the growth rate cannot be calculated with a precision of more than 3
decimal digits and of the wavenumber with more than 2. The eigenvectors for these
cases can be seen in figures 7 and 8. It can be seen that the two results are in good
agreement and the approximation mentioned above should produce accurate results
also for larger E. Unfortunately no accurate results could be obtained for even higher
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Figure 5. The real and imaginary parts of the Ũ0 and Ṽ0 disturbances of the most amplified
Görtler vortex for the case E = 200, Ω =3.25.

values of E (E > 104). However it is possible to develop an asymptotic approximation
for E � 1; and this is done in the following section.

4. Asymptotics for the case E � 1

4.1. Formulation

We see from the graphs of the solutions of the previous section that as E is increased,
the disturbances move away from the wall at a rate that is approximately logarithmic
in E. This could be anticipated from the form of the operator:

K =
∂2

∂Ψ 2
− 1 − β̃Ψ

λ̃3
− ∂

∂τ
− iE

λ̃
exp

(
−

√
Ω

2

Ψ

λ̃

)
cos α,

where

α =
Ω

λ̃2
τ −

√
Ω

2

Ψ

λ̃
.

In the region of interest, where the magnitude of the disturbances is large, the order
of each of the terms has to be the same, in this case O(1). The appropriate scalings
are found to be

Ψ = (logE)5(1−d)/4 + χ, λ̃ = (logE)(1−d)/4λ0, β̃ = (logE)−(1−d)/2β0,

Ω = (logE)2dΩ0, U0 = U00, V0 = (logE)(1−d)/2V00.
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Figure 6. The real and imaginary parts of the Ũ0 and Ṽ0 disturbances of the most amplified
Görtler vortex for the case E = 1000, Ω = 3.25.

Here the constant d will be fixed at a later stage. With these stretchings the term of
K that contains the exponential becomes

E

(logE)(1−d)/4
exp

[
− (logE)

√
Ω0

2

1

λ0

]
exp

[
− (logE)(5d−1)/4

√
Ω0

2

χ

λ0

]
.

The second exponential contains the effects of the oscillation (Stokes layer). The only
possible value of d that will make this term independent of (logE) is d = 1/5. Thus
the new eigenvalue problem can be formulated as follows:(

∂2

∂χ2
− 1 − β̃0

λ̃3
0

− ∂

∂τ
− iŵ0

λ̃0

)
U00 =

1

λ̃2
0

V00,[(
∂2

∂χ2
− 1 − β̃0

λ̃3
0

− ∂

∂τ
− iŵ0

λ̃0

)(
∂2

∂χ2
− 1

)
+

iŵ0τ

λ̃0

]
V00 = − 1

λ̃3
0

U00,




(29)

and

ŵ0(χ, τ ) = exp

(
−

√
Ω0

2

χ

λ̃0

)
cos

(
Ω0

λ̃2
0

τ −
√

Ω0

2

χ

λ̃0

)
.

The boundary conditions as χ → −∞ are the following: U00, V00, V00χ → 0. As χ → ∞
the ŵ0 terms become negligible and the above equations can be written as a single
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Ṽ0

0 5 10 15 20 25

Imag.

Real
Imag.

Real
Imag.

Figure 7. The real and imaginary parts of the Ũ0 and Ṽ0 disturbances of the most amplified
Görtler vortex for the case E = 5000, Ω =3.25.

equation with constant coefficients. However the equation has only two exponentially
decaying solutions so we cannot make the disturbance go to zero directly in this
region, since at infinity the solution is still oscillatory. Instead we must find a solution
in a larger region using a WKB method. Full details can be found in the thesis of
Galionis; we will give only the most important details here.

If we return to the original equations (21), make the same stretching of parameters
and variables except for Ψ , for which we now set Ψ = (logE)η, and focus on the
region η > 1 we obtain a pair of equations which can be combined to give a single
equation for U00. For simplicity we set δ = (logE)−2, σ = β0 λ

−3
0 , R = λ−5

0 , D= d/dη

and U00 ≡ U . Thus

[δ3D6 − δ2(3 + 2ση)D4 − δ2(3σ )D3 + δ(σ 2η2 + 4ση + 3)D2

+ δσ (ση + 3)D + ηR − (1 + ση)2]U = 0. (30)

Equation (30) lends itself to a WKBJ solution. It can be shown that equation (30) has
a turning point in the region η > 1, let us say at η = ηt . For 1 <η <ηt the behaviour of
U is oscillatory and for η >ηt monotonic. These two expressions for U can be matched
by the study of the intermediate layer in the vicinity of the turning point. Setting
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Figure 8. The real and imaginary parts of the Ũ0 and Ṽ0 disturbances of the most amplified
Görtler vortex for the case E = 5000, Ω = 3.25 (reduced domain).

η − ηt = δ1/6ξ and γ =
√

R2 − 4σR/[(σηt + 1)(ση + 3)] > 0, we obtain the following:

Uosc ∼ C ′
1δ

−1/24(−ξ )−1/4 sin
[

2
3
δ−1/4γ 1/2(−ξ )3/2 + φ

]
,

Uint ∼ K1Ai
(
γ 1/3δ−1/6ξ

)
,

Umon ∼ C1δ
−1/24ξ−1/4 exp

[
− 2

3
δ−1/4γ 1/2ξ 3/2

]
.


 (31)

Matching the above with the corresponding forms either side of the turning point
yields the argument of the sine in the oscillatory part of U . This matches with the
oscillatory solution for U00(χ) mentioned before. This yields a behavioural boundary
condition for U00(χ) and V00(χ) as χ → ∞. Numerically this behavioural boundary
condition has to be replaced with a numerical one on the upper limit of a truncated
domain χmax � 1; namely

dU00

dχ
+ κU00 = 0 and

dV00

dχ
+ κV00 = 0,

κ = −q0

cos(q0χmax) − N sin(q0χmax)

sin(q0χmax) + N cos(q0χmax)
,

where q0 is the real solution of the auxillary equation associated with the constant-
coefficient equation corresponding to (29) and valid as χ → ∞, and N is a quantity
whose form is derived by the matching of the oscillating and solutions Uosc(η)
and U00(χ). The eigenvalue problem to be solved is given by equations (29)



Stabilization of the most amplified Görtler vortex 279
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Figure 9. The real and imaginary parts of the U00 and V00 disturbances of the most
amplified Görtler vortex for the case logE = 1011, Ω0 = 1.

with exponentialy decaying solutions as χ → −∞ and the aforementioned periodic
conditions as χ → ∞.

4.2. Asymptotic results

Our calculations showed that for logE � 1011 the maximum growth rate and the
wavenumber at which the latter is achieved are practically constant. The results
taken for logE = 1011 are the following: β0 ≈ 0.5823559 at λ0 = 0.4882989. The U00

and V00 disturbances under these conditions are illustrated in figure 9. It is evident
that the eigenfunctions decay rapidly to zero for negative values of χ due to the
effects of the Stokes layer and over the largest part of the domain the solutions are
oscillatory with wavenumber q0. It should also be mentioned that the above results
were calculated for M = 2, i.e. 5 modes were kept. Except for the zeroth mode these
have very small amplitudes and attain non-zero values in practice over a very small
region: −5 � χ � 10, as is illustrated in figure 10. The aforementioned results were
obtained with Ω0 = 1, but they are valid for other values of the frequency parameter.
Indeed the small extent and influence of the other modes relative to the zeroth mode
explains the observed minimal effect of the frequency Ω0 on β0 and λ0.

The numerical results indicate that the quantity ∂β0/∂λ0 is very small over a large
range of values of λ0. This means in practice that the numerical results should be
accurate as far as the maximum growth rate β0 is concerned, but they might yield a
poor approximation to λ0. Indeed, if we set E = 5000, we obtain logE ≈ 8.5172 and
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Görtler vortex case with logE = 1011, Ω0 = 1.

subsequently

Ω = (logE)2/5Ω0 ≈ 2.356,

β̃ = (logE)−2/5β0 ≈ 0.237,

λ̃ = (logE)1/5λ0 ≈ 0.749.

The results obtained from the original problem (equations (27), (28)) were β̃ = 0.246
and λ̃=0.48 for the most unstable vortex at the same value of Ω . The asymptotic
value of β̃ is very close to the one obtained from the original problem although the
value of E is very small. On the other hand the wavenumber of the most unstable
Görtler vortex is poor. The agreement of the asymptotic and original problem results
might be better if the value of E used in the original problem were larger. However
the fact remains that β = (logE)(−2/5)β0 > 0, indicating that although a stabilization of
some Görtler vortices can be achieved with large E, the instability in general remains
in the small wavelengths around λ=(logE)1/5λ0. The values of the amplitude relevant
for the validity of the asymptotic structure found above are well beyond the range of
physical relevance but we feel it is important to show the structure since it confirms
that complete stabilization of centrifugally induced vortices is impossible at large
amplitudes.

5. Conclusions
A study concerning the most unstable Görtler vortex has been carried out in

the case of a spanwise oscillating concave surface. It has been shown that these
spanwise oscillations reduce the growth rate of the most unstable vortex, but without
reaching negative values, even when very large values of the magnitude of the speed
of oscillation E are used. The reason behind this is the fact that as E is increased
the disturbances move towards the interior of the flow and therefore the influence of
the motion of the wall is reduced. This is seen by the logarithmic behaviour of both
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the spanwise wavenumber λ̃ and the growth rate β̃ of the most unstable mode when
E � 1.

Unfortunately the study of the case of very small frequency of oscillation Ω

combined with very large values of E cannot be treated due to numerical difficulties.
It has been observed however that the growth rate is more sensitive to changes of Ω

than of E. Indeed even for relatively moderate values of E but small values of Ω it
was seen that the maximum growth rate was reduced substantially.

For the dimensional values of the quantities related to the oscillations (E and Ω)
the following can be derived:

E = ε̂(χµ2)−1/5,

where

ε̂ =
Re1/2

U ∗
∞G1/5

ε∗, χG = 2Re1/2L∗ d2g∗

dx∗2
, µ =

du∗

dy∗

∣∣∣∣
0

L∗

U ∗
∞

1

Re1/2
.

Substituting these in the above relation for E and taking into account the expression
for the Reynolds number, we derive an expression for the dimensional magnitude of
the spanwise velocity of the oscillation ε∗:

ε∗ = 21/5ν∗3/5
∞ [g∗′′

(u∗′

w)2]1/5E.

Similarly for the dimensional frequency of the oscillation we obtain

ω∗ = 22/5ν∗1/5
∞ [g∗′′

(u∗′

w)2]2/5Ω.

In order to get an idea of the order of magnitude of these quantities we set
ν∗ ∼ 10−5 m2 s−1, g∗′′ ∼ 10−2 m−1 and u∗′

w = (0.4969/
√

2)
√

U ∗3
∞ /ν∗

∞x∗ s−1 in a Blasius
boundary layer. Therefore

ε∗ ∼ 10−3

(
U ∗

∞
x∗

)1/5

E and ω∗ ∼
(

U ∗
∞

x∗

)2/5

Ω,

where U ∗
∞ has units m s−1, ε∗ and x∗ have units m and ω∗ has units s−1. As was seen

in the previous results, a satisfactory decrease of the growth rate (∼ −15%) of the
most dangerous mode can be achieved for E = 500 and Ω = 3.25. According to the
above expressions this means

ε∗ ∼
(

U ∗
∞

x∗

)1/5

and ω∗ ∼
(

U ∗
∞

x∗

)2/5

.

Figure 11 shows the values of the quantity (U ∗
∞/x∗)1/5 for various combinations of

U ∗
∞ and x∗ that are expected in aeronautical applications taking into account that

we have to remain in the incompressible speed region, i.e. 10 � U ∗
∞ � 60 m s−1 and

1 � x∗ � 5 m. This figure reveals that both ε∗ and ω∗ are practically always of order
1 m s−1 and 1 s−1 respectively.

Viewing the above relations from a different perspective, one can arrive at the
conclusion that for a specific magnitude and frequency of the oscillations and
increasing speed, it becomes harder to reduce the growth rate of the dangerous
modes, since E and Ω are inversely proportional to (U ∗

∞)1/5 and (U ∗
∞)2/5 respectively

and the stabilizing effects become important for large values of E. On the other hand
Ω becomes smaller, which is beneficial for the stabilization, but as was shown above,
in practice it remains within a specified region of values of order 1.

Moreover an interesting effect is that for E � 1 and Ω ∼ O(1), the solution becomes
independent of Ω at zeroth-order accuracy. Taking into account that Ω determines
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with E the extent of the Stokes layer according to the equation for ŵ, the above
conclusion should not come as a surprise, since at E � 1 the Stokes layer will be very
wide, no matter what the value of Ω , as long as the latter remains of order 1.

Finally it should be pointed out that since the vortices move away from the wall
for increasing E, there will be a point at which they will be located far enough from
the wall and towards the upper limit of the boundary layer, where a different flow
structure is valid. This indicates the need for some further work, in order to be able
to conclude firmly whether the most unstable Görtler vortices can be stabilized or
not.
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